The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the “root.” Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that “all houses in this place forms a binary tree”. It will automatically contact the police if two directly-linked houses were broken into on the same night.
Determine the maximum amount of money the thief can rob tonight without alerting the police.
Example 1:
Input: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
Output: 7
Explanation: Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
Example 2:
Input: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
Output: 9
Explanation: Maximum amount of money the thief can rob = 4 + 5 = 9.
又是个house rober的题目,前几天基本都是使用动态规划来做的,这题变成了二叉树,而且不能偷相邻节点。
这题没想到好方法,直接暴力解题。大概思路就是保存每个节点能偷到的最大数量,当然这个数量可能是包含该节点的,或者是不包含该节点的。
当前节点的最大数量,为当前节点加上相邻的左右节点的子节点的最大值,不包含当前节点的相邻左右节点的最大值相比较,取最大值:
int rob(TreeNode* root) {
unordered_map<TreeNode*, int> um;
return dfs(root, um);
}
static int dfs(TreeNode* root, unordered_map<TreeNode*, int> &rvm) {
if (nullptr == root) {
return 0;
}
if (rvm.count(root) != 0) {
return rvm[root];
}
int nVal = root->val;
if (nullptr != root->left) {
nVal += dfs(root->left->left, rvm);
nVal += dfs(root->left->right, rvm);
}
if (nullptr != root->right) {
nVal += dfs(root->right->left, rvm);
nVal += dfs(root->right->right, rvm);
}
nVal = std::max(nVal, dfs(root->left, rvm) + dfs(root->right, rvm));
rvm[root] = nVal;
return nVal;
}