1. Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.)
  2. (Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
  3. Since the answer may be large, return the answer modulo 10^9 + 7.
  4. Example 1:
  5. Input: n = 5
  6. Output: 12
  7. Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
  8. Example 2:
  9. Input: n = 100
  10. Output: 682289015
  11. Constraints:
  12. 1 <= n <= 100

这题还是有点意思的。首先题目让我们求排列组合的可能性。我们需要找出[1,N]之间所有的素数并且把它们放入质数的索引中,其余的放非素数,求有多少种可能性。

有多少个质数,那么就有多少个质数的索引,所以假设有N个质数,那么我们只需要求出它们的排列组合数量;其余的,我们再求出它们的排列素和数量,然后让它们相乘即可。

所以又变成了求某个范围内质数数量的题目。我们直接跑一个循环,首先可以排除非2的双数,它们肯定不是质数。然后当跑到另一半后退出循环即可,这个想想就可以理解,这样我们可以减少一半的循环。

  1. class PrimeArrangements : public Solution {
  2. public:
  3. void Exec() {
  4. auto res = numPrimeArrangements(11);
  5. }
  6. int numPrimeArrangements(int n) {
  7. int numOfPrime = 0;
  8. if (n >= 2) {
  9. ++numOfPrime;
  10. }
  11. for (int i = 3; i <= n; i++) {
  12. if (i % 2 == 0) {
  13. continue;
  14. }
  15. int flag = 0;
  16. for (int j = 3; j < i; j++) {
  17. if (j * j > i) {
  18. break;
  19. }
  20. if (i % j == 0) {
  21. flag = 1;
  22. break;
  23. }
  24. }
  25. if (flag == 0) {
  26. ++numOfPrime;
  27. }
  28. }
  29. long long permutations = 1;
  30. for (int i = 1; i <= numOfPrime; i++) {
  31. permutations *= i;
  32. permutations %= (long long)(1e9 + 7);
  33. }
  34. for (int i = 1; i <= n - numOfPrime; i++) {
  35. permutations *= i;
  36. permutations %= (long long)(1e9 + 7);
  37. }
  38. return int(permutations);
  39. }
  40. };
共 0 条回复
暂时没有人回复哦,赶紧抢沙发
发表新回复

作者

sryan
today is a good day