Given an array of positive integers arr, calculate the sum of all possible odd-length subarrays.
A subarray is a contiguous subsequence of the array.
Return the sum of all odd-length subarrays of arr.
Example 1:
Input: arr = [1,4,2,5,3]
Output: 58
Explanation: The odd-length subarrays of arr and their sums are:
[1] = 1
[4] = 4
[2] = 2
[5] = 5
[3] = 3
[1,4,2] = 7
[4,2,5] = 11
[2,5,3] = 10
[1,4,2,5,3] = 15
If we add all these together we get 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
Example 2:
Input: arr = [1,2]
Output: 3
Explanation: There are only 2 subarrays of odd length, [1] and [2]. Their sum is 3.
Example 3:
Input: arr = [10,11,12]
Output: 66
Constraints:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
这题一开始找各个数字出现的规律,后来找了半天没发现规律,估计自己太笨了,直接暴力破解吧。循环里面可以使用滑动窗口的概念来优化子串的求和运算,减去前一个数字,加上最后一个数字即可。
class SumOfAllOddLengthSubarrays : public Solution {
public:
void Exec() {
}
int sumOddLengthSubarrays(vector<int>& arr) {
int sum = 0;
for (int i = 1; i <= arr.size(); i += 2) {
int prevSum = 0;
for (int j = 0; j < arr.size() - i + 1; j++) {
if (j == 0) {
for (int k = 0; k < i; k++) {
prevSum += arr[j + k];
}
} else {
prevSum += arr[j + i - 1] - arr[j - 1];
}
sum += prevSum;
}
}
return sum;
}
};