You are given an array items, where each items[i] = [typei, colori, namei] describes the type, color, and name of the ith item. You are also given a rule represented by two strings, ruleKey and ruleValue.
The ith item is said to match the rule if one of the following is true:
ruleKey == "type" and ruleValue == typei.
ruleKey == "color" and ruleValue == colori.
ruleKey == "name" and ruleValue == namei.
Return the number of items that match the given rule.
Example 1:
Input: items = [["phone","blue","pixel"],["computer","silver","lenovo"],["phone","gold","iphone"]], ruleKey = "color", ruleValue = "silver"
Output: 1
Explanation: There is only one item matching the given rule, which is ["computer","silver","lenovo"].
Example 2:
Input: items = [["phone","blue","pixel"],["computer","silver","phone"],["phone","gold","iphone"]], ruleKey = "type", ruleValue = "phone"
Output: 2
Explanation: There are only two items matching the given rule, which are ["phone","blue","pixel"] and ["phone","gold","iphone"]. Note that the item ["computer","silver","phone"] does not match.
Constraints:
1 <= items.length <= 104
1 <= typei.length, colori.length, namei.length, ruleValue.length <= 10
ruleKey is equal to either "type", "color", or "name".
All strings consist only of lowercase letters.
算出索引即可。
class CountItemsMatchingARule : public Solution {
public:
void Exec() {
}
int countMatches(vector<vector<string>>& items, string ruleKey, string ruleValue) {
int count = 0, index = 0;
if (ruleKey[0] == 'c')
index = 1;
else if (ruleKey[0] == 'n')
index = 2;
for (auto &vec : items) {
if (vec[index] == ruleValue)
count++;
}
return count;
}
};