Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
这题直接暴力破解了。使用归并排序的思路,遍历到中间位置,记录下最后遍历的两个值。
假设是偶数,则取平均值,奇数直接返回最后一个值即可。
class MedianOfTwoSortedArrays : public Solution {
public:
void Exec() {
}
double findMedianSortedArrays(const vector<int>& nums1, const vector<int>& nums2) {
int p1 = 0, p2 = 0, count = 0, lv1 = 0, lv2 = 0;
while (count <= (nums1.size() + nums2.size()) / 2) {
++count;
if (p1 >= nums1.size()) {
lv1 = lv2;
lv2 = nums2[p2++];
} else if (p2 >= nums2.size()) {
lv1 = lv2;
lv2 = nums1[p1++];
} else {
if (nums1[p1] <= nums2[p2]) {
lv1 = lv2;
lv2 = nums1[p1++];
} else {
lv1 = lv2;
lv2 = nums2[p2++];
}
}
}
if ((nums1.size() + nums2.size()) % 2 != 0) {
return lv2;
}
return float(lv1 + lv2) / 2;
}
};